Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(48): 105030-105055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725301

RESUMO

Globally, industrialisation and urbanisation have led to the generation of hazardous waste (HW). Sustainable hazardous waste management (HWM) is the need of the hour for a safe, clean, and eco-friendly environment and public health. The prominent waste management strategies should be aligned with circular economic models considering the economy, environment, and efficiency. This review critically discusses HW generation and sustainable management with the strategies of prevention, reduction, recycling, waste-to-energy, advanced treatment technology, and proper disposal. In this regard, the major HW policies, legislations, and international conventions related to HWM are summarised. The global generation and composition of hazardous industrial, household, and e-waste are analysed, along with their environmental and health impacts. The paper critically discusses recently adapted management strategies, waste-to-energy conversion techniques, treatment technologies, and their suitability, advantages, and limitations. A roadmap for future research focused on the components of the circular economy model is proposed, and the waste management challenges are discussed. This review stems to give a holistic and broader picture of global waste generation (from many sources), its effects on public health and the environment, and the need for a sustainable HWM approach towards the circular economy. The in-depth analysis presented in this work will help build cost-effective and eco-sustainable HWM projects.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Resíduos Perigosos , Saúde Pública , Políticas , Gestão da Segurança , Reciclagem , Resíduos Sólidos
2.
J Environ Manage ; 203(Pt 1): 476-488, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28841515

RESUMO

In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H2O2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range.


Assuntos
Ácidos Ftálicos , Esgotos , Eletrodos , Peróxido de Hidrogênio , Resíduos Industriais , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...